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We derive a fluctuation theorem for generalized work distributions, related to bijective mappings of the
phase spaces of two physical systems, and use it to derive a two-sided constraint maximum likelihood esti-
mator of their free-energy difference which uses samples from the equilibrium configurations of both systems.
As an application, we evaluate the chemical potential of a dense Lennard-Jones fluid and study the construction
and performance of suitable maps.
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I. INTRODUCTION

Extracting free-energy differences from a suitable set of
computer simulation data is an active field of research and of
interest, e.g., for drug design �1� or nonperturbative quantum
chromodynamics �2�. Concerning estimators for the free-
energy difference, an extensive literature can be found. Prob-
ably the most elementary estimator is the traditional free-
energy perturbation �3�, which is briefly introduced in the
following. Assume we have given two systems, arbitrarily
labeled as system 0 and system 1, that are characterized by
Hamiltonians H0�x� and H1�x�, respectively, depending on
the point x in phase space. Further, let �i�x� denote the ther-
mal equilibrium phase space density of system i,

�i�x� =
e−�Hi�x�

Zi
, i = 0,1, �1�

where Zi=�e−�Hi�x�dx denotes the partition function and �
= 1

kT the inverse temperature. We are interested in the Helm-
holtz free-energy difference �F of the systems, defined as
�F=− 1

� ln
Z1

Z0
. Traditional free-energy perturbation �3� origi-

nates from the equality

�0�x�
�1�x�

= e���H�x�−�F�, �2�

with �H�x�ªH1�x�−H0�x�. The latter quantity may be inter-
preted as the work performed during an infinitely fast switch-
ing process transforming system 0 to system 1, with initial
configuration x �4�. A direct consequence of Eq. �2� is the
perturbation identity

e−��F =� e−��H�x��0�x�dx , �3�

which is frequently used to obtain an estimate of �F in
drawing a sample �x1 , . . . ,xN� from �0�x� �e.g., by Monte
Carlo simulations� and evaluating the estimator

�F̂

0
trad = −

1

�
ln e−��H�x�. �4�

The overbar denotes a sample average �i.e., f�x�
= 1

N	k=1
N f�xk� where f stands for an arbitrary function�. As can

be seen by comparison with Eq. �2�, the integrand appearing
in Eq. �3� is proportional to �1, and thus the main contribu-
tions to an accurate estimate of �F with Eq. �4� come from

realizations x �drawn from �0� that are typical for the density
�1. This means that the performance of such an estimate
depends strongly on the degree of overlap of �0 with �1. If
the overlap is small, the traditional free-energy perturbation
is plagued with a slow convergence and a large bias. This
can be overcome by using methods that bridge the gap be-
tween the densities �0 and �1, for instance the thermody-
namic integration. Since thermodynamic integration samples
a sequence of many equilibrium distributions, it soon be-
comes computationally expensive. Another method is um-
brella sampling �5� which distorts the original distribution in
order to sample regions that are important for the average.
Because of the distortion, the latter method is in general
restricted to answer only one given question, e.g., the value
of the free-energy difference, but fails to give further an-
swers. This is of particular concern, if in addition the values
of some other thermodynamic variables are sought, for ex-
ample, pressure or internal energy. There are dynamical
methods �6� that make use of the Jarzynski work theorem
�4�. They allow to base the estimator on work values of fast,
finite time, nonequilibrium processes connecting system 0
with system 1. However, the dynamic simulation of the tra-
jectories is typically very expensive.

Six years ago, the targeted free-energy perturbation
method �7� was introduced; a promising method which is
based on mapping equilibrium distributions close to each
other in order to overcome the problem of insufficient over-
lap, without the need to draw from biased distributions.
However, this method is rarely used in the literature �8,9�. An
obstacle might be that there is no general description of how
to construct a suitable map. A related idea �10� was applied
in �11�. A recent improvement is the escorted free-energy
simulation �12� which is a dynamical generalization of the
targeted free-energy perturbation.

Any free-energy difference refers to two equilibrium en-
sembles. The above mentioned methods draw only from one
of the two ensembles and propagate the system in direction
of the other. Insofar, they are “one-sided” methods. However,
it is of advantage to draw from both equilibrium distributions
and combine the obtained “two-sided” information. Optimiz-
ing the elementary two-sided estimator for free-energy dif-
ferences results in the acceptance ratio method �13–15�. The
next step of improvement is to implement a two-sided tar-
geted free-energy method that optimally employs the infor-
mation of drawings from both equilibrium distributions. Our
aim is to combine the advantages of the acceptance ratio
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method with the advantages of the targeted free-energy per-
turbation.

The central result of this paper is a fluctuation theorem for
the distributions of generalized work values that is derived
and presented in Sec. III. From this fluctuation theorem, the
desired optimal two-sided targeted free-energy estimator fol-
lows in Sec. IV. In Sec. V, appropriate measures are intro-
duced which relate the overlap of �̃0 with �1 to the mean
square errors of the one- and two-sided free-energy estima-
tors. In Sec. VI, a convergence criterion for the two-sided
estimator is proposed. From Sec. VII on, numerics plays an
important part. In particular, Sec. VII A deals with explicit
numerical applications. Based on the two-sided targeted free-
energy estimator, in Sec. VII B, an estimator for the chemical
potential of a high-density homogeneous fluid is established
and applied to a dense Lennard-Jones fluid. Finally, the con-
struction and performance of suitable maps is studied. In
order to set some notation straight, we start by recalling the
targeted free-energy perturbation method.

II. TARGETED FREE-ENERGY PERTURBATION

Let �0 and �1 denote the phase spaces of the systems 0
and 1, respectively. We require that �i contains only those
points x for which �i�x� is nonzero.

Mapping the phase space points of system 0, x→��x�,
such that the mapped phase space �̃0=���0� coincides with
the phase space �1 and such that the mapped distribution �̃0
overlaps better with the canonical distribution �1 results in
the targeted free-energy perturbation �7� where the samples
are drawn effectively from �̃0 instead.

Following the idea of Jarzynski �7�, we introduce such a
phase space map. If �0 and �1 are diffeomorph, there exists
a bijective and differentiable map M from �0 to �1,

M:�0 → �1, M:x → ��x� , �5�

where the absolute value of the Jacobian is

K�x� = 
� ��

�x
�
 . �6�

The inverse map reads

M−1:�1 → �0, M−1:y → �−1�y� . �7�

According to M, the phase space density �0 is mapped to
the density �̃0,

�̃0�y� = �
�0

��y − ��x���0�x�dx , �8�

which can be written as

�̃0„��x�… =
�0�x�
K�x�

�9�

or

�
����

�̃0�y�dy = �
�

�0�x�dx, ∀ � � �0. �10�

In analogy to Eq. �2�, the targeted free-energy perturba-
tion is based on the identity

�̃0„��x�…
�1„��x�…

= e���H˜�x�−�F� ∀ x � �0, �11�

which follows from the densities �1� and �9� with �H̃ being
defined by

�H˜�x� ª H1„��x�… − H0�x� −
1

�
ln K�x� . �12�

Multiplying Eq. �11� by e−��H̃�x��1(��x�)K�x� and integrating
over �0 yields the targeted free-energy perturbation formula,

e−��F = �
�0

e−��H˜�x��0�x�dx . �13�

An alternative derivation is given in �7�. The traditional free-
energy perturbation formula �3� can be viewed as a special
case of Eq. �13�. The latter reduces to the former if M is
chosen to be the identity map, ��x�=x. �This requires that
�1=�0 holds.�

Now an obvious estimator for �F, given a sample �xk�
drawn from �0�x�, is

�F̂

0 = −
1

�
ln e−��H˜�x�, �14�

which we refer to as the targeted forward estimator for �F.
The convergence problem of the traditional forward estima-
tor, Eq. �4�, in the case of insufficient overlap of �0 with �1 is
overcome in the targeted approach by choosing a suitable
map M for which the image �̃0 of �0 overlaps better with �1.
Indeed, suppose for the moment that the map is chosen to be
ideal, namely such that �̃0�x� coincides with �1�x�. Then, as a

consequence of Eq. �11�, the quantity �H̃�x� is constant and
equals �F, and the convergence of the targeted estimator
�14� is immediate. Although the construction of such an ideal
map is impossible in general, the goal of approaching an
ideal map guides the design of suitably good maps.

To complement the one-sided targeted estimator, a second
perturbation formula in the “reverse” direction is derived
from Eq. �11�,

e+��F = �
�1

e+��H˜

„�−1�y�…�1�y�dy , �15�

leading to the definition of the targeted reverse estimator �F̂

1
of �F,

�F̂

1 = +
1

�
ln e+��H˜

„�−1�y�…. �16�

The index 1 indicates that the set �yk� is drawn from �1.
Using the identity map ��x�=x in Eq. �16� gives the tradi-
tional reverse estimator, which is valid if �0=�1 holds.
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It will prove to be beneficial to switch from phase space
densities to one-dimensional densities which describe the

value distributions of �H̃�x� and �H̃(�−1�y�), cf. Eqs. �13�
and �15�. This is done next and results in the fluctuation
theorem for generalized work distributions.

III. FLUCTUATION THEOREM FOR GENERALIZED
WORK DISTRIBUTIONS

We call �H̃�x�, x��0, function of the generalized work

in forward direction and �H̃(�−1�y�), y��1, function of the
generalized work in reverse direction, having in mind that
these quantities are the functions of the actual physical work
for special choices of the map M �16�.

The probability density p�W 
0;M� for the outcome of a
specific value W of the generalized work in forward direction
subject to the map M when sampled from �0 is given by

p�W
0;M� = �
�0

��W − �H˜�x���0�x�dx . �17�

Conversely, the probability density p�W 
1;M� for the ob-
servation of a specific value W of the generalized work in
reverse direction when sampled from �1 reads

p�W
1;M� = �
�1

��W − �H˜

„�−1�y�…��1�y�dy . �18�

Relating the forward and reverse “work” probability densi-
ties to each other results in the fluctuation theorem

p�W
0;M�
p�W
1;M�

= e��W−�F�. �19�

This identity provides the main basis for our further results.
It is established by multiplying Eq. �11� with ��W
−�H̃�x���1(��x�) and integrating with respect to ��x�. The
left-hand side yields

�
���0�

��W − �H˜�x���̃0„��x�…d��x�

= �
�0

��W − �H˜�x���0�x�dx = p�W
0;M� , �20�

and the right-hand side gives

�
���0�

e���H˜�x�−�F���W − �H˜�x���1„��x�…d��x�

= e��W−�F��
�1

��W − �H˜

„�−1�y�…��1�y�dy

= e��W−�F�p�W
1;M� . �21�

It is worthwhile to emphasize that the fluctuation theorem
�19� is an exact identity for any differentiable, bijective map
M from �0 to �1. Especially, it covers known fluctuation
theorems �17–20� related to the physical work applied to a
system that is driven externally and evolves in time accord-

ing to some deterministic equations of motion, e.g., those of
Hamiltonian dynamics, Nosé-Hoover dynamics, or Gaussian
isokinetic dynamics �16�.

As an example, consider the time-reversible adiabatic
evolution of a conservative system with Hamiltonian H��x�,
depending on an externally controlled parameter � �e.g., the
strength of an external field�. Let x�t�=�(x0 , t ;��·�) with
x�0�=x0 be the flow of the Hamiltonian system which is a
functional of the parameter ��t� that is varied from ��0�=0
to ��	�=1 according to some prescribed protocol that consti-
tutes the forward process. The Hamiltonian flow can be used
to define a map, M :x→��x�ª�(x ,	 ;��·�). Since the evo-
lution is adiabatic and Hamiltonian, no heat is exchanged,
Q=0, and the Jacobian is identical to one, 
 ��

�x 
=1. Conse-
quently, the generalized work in the forward direction re-
duces to the physical work applied to the system, W0

ª�H̃�x�=H1(��x�)−H0�x�=W. For each forward path
�x�t� ,��t� ;0
 t
	� we have a reverse path �xT�	− t� ,�T�	
− t� ;0
 t
	�, where the superscript T indicates that quanti-
ties that are odd under time reversal �such as momenta� have
changed their sign. The generalized work in reverse direction
reduces to the physical work done by the system

W1
ª �H˜

„�−1�y�… = H1�y� − H0„�
−1�y�… − 1

� ln K„�−1�y�…

= − �H0„�
−1�y�T

… − H1�yT�� = − W .

Starting the forward process with an initial canonical distri-
bution, �0�x�, some probability distribution for the physical
work in forward direction follows, p�W 
0;M�¬pF�W�.
Starting the reverse process with an initial canonical distri-
bution, �1�y�, some probability distribution for the physical
work in reverse direction follows, p�W 
1;M�¬pR�−W�.
The distributions pF�W� and pR�−W� are related to each other
by the identity �19� which coincides with the fluctuation
theorem of Crooks �17�.

From the fluctuation theorem �19� some important in-
equalities follow that are valid for any map M. First of all
we state that the targeted free-energy perturbation formulas
�13� and �15� can be regarded as a simple consequence of the
fluctuation theorem �19� and can be rewritten in terms of the
generalized work distributions, e−��F= �e−�W
0 and e+��F

= �e+�W
1, where the angular brackets with subscript i denote
an ensemble average with respect to the density p�W 
 i ;M�,
i=0,1. The monotonicity and convexity of the exponential
function appearing in the above averages allows the applica-
tion of Jensen’s inequality, �e��W
�e���W
. From this fol-
lows the fundamental inequality

�W
1 
 �F 
 �W
0, �22�

which shows that the values of the average work in forward
and reverse direction constitute an upper and a lower bound
on �F, respectively.

Concerning one-sided estimates of �F, the targeted for-
ward and reverse estimators �14� and �16� can be written

�F̂

0=− 1
�e−�W0

and �F̂

1= 1
�e�W1

, where the overbar denotes a
sample average according to a sample �Wk

0� and �Wk
1� of for-

ward and reverse work values, respectively. Similarly to Eq.

�22� one finds the inequalities �F̂

0
W0 and �F̂

1�W1.
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Taking the ensemble averages ��F̂

i
i= �
1
� �ln e��Wi


i, i
=0,1, of the one-sided estimates and applying Jensen’s in-
equality to the averages of the logarithms, �ln e��Wi


i


 ln�e��Wi

i= ���F, one obtains

�W
1 
 ��F̂

1
1 
 �F 
 ��F̂

0
0 
 �W
0. �23�

In other words, the forward and reverse estimators are biased
in opposite directions for any finite size N of the work
samples, but their mean values form closer upper and lower
bounds on �F than the values of the mean work do.

So far, we were concerned with one-sided estimates of �F
only. However, the full power of the fluctuation theorem �19�
will develop when dealing with a two-sided targeted free-
energy estimator where a sample of forward and reverse
work values is used simultaneously, since the fluctuation
theorem relates the forward and reverse work probability
densities to each other in dependence of the free-energy dif-
ference.

In the next section, we will not mention the target map M
explicitly in order to simplify the notation. For instance, we
will write p�W 
 i�, but mean p�W 
 i ;M� instead.

IV. TWO-SIDED TARGETED FREE-ENERGY ESTIMATOR

An important feature of the fluctuation theorem �19� is
that it provides a way to answer the following question:
Given a sample of n0 work values �Wi

0�= �W1
0 , . . . ,Wn0

0 � in the
forward direction and a second sample of n1 work values
�Wj

1�= �W1
1 , . . . ,Wn1

1 � in the reverse direction, what would be
the best estimator of �F that utilizes the entire two samples?

If drawn from an ensemble that consists of forward and
reverse work values, the elements are given by a pair of
values �W ,Y� of work and direction, where Y =0 indicates
the forward and Y =1 the reverse direction. The probability
density of the pairs �W ,Y� is p�W ,Y�. The probability den-
sity for the work is p�W�ªp�W ,0�+ p�W ,1�, and that for the
direction is pYª�p�W ,Y�dW.

Bayes theorem,

p�W
Y�pY = p�Y
W�p�W� , �24�

implies the “balance” equation

p1� p�0
W�p�W
1�dW = p0� p�1
W�p�W
0�dW . �25�

From the fluctuation theorem �19� and Bayes theorem �24�
follows

p�0
W�
p�1
W�

= e��W−C� �26�

with

C = �F +
1

�
ln

p1

p0
. �27�

Together with the normalization p�0 
W�+ p�1 
W�=1, Eq.
�26� determines the explicit form of the conditional direction
probabilities �15�,

p�Y
W� =
eY��C−W�

1 + e��C−W� , Y = 0,1. �28�

Replacing both, the ensemble averages by sample averages
and the ratio

p1

p0
by

n1

n0
, the balance equation, p1�p�0 
W�
1

= p0�p�1 
W�
0, results in the two-sided targeted free-energy
estimator, n1p�0 
W1�=n0p�1 
W0�, which reads

	
j=1

n1 1

1 + e���F̂

01+ 1
�

ln
n1
n0

−Wj
1� = 	

i=1

n0 1

1 + e−���F̂

01+ 1
�

ln
n1
n0

−Wi
0� .

�29�

It is worth it to emphasize that this estimator is the optimal
two-sided estimator, a result that is shown with a constraint
maximum likelihood approach in the Appendix. A derivation
of this estimator is also given by Shirts et al. �15� in the
framework of a maximum likelihood approach.

If samples of n0 forward and n1 reverse work values �Wi
0�

and �Wj
1� are given, but no further information is present, it is

the two-sided estimator �29� that yields the best estimate of
the free-energy difference with respect to the mean square
error. If needed, the samples �Wi

0� and �Wj
1� can be obtained

indirectly by drawing samples �xi� and �yj� of �0 and �1 and

setting Wi
0=�H̃�xi� and Wj

1=�H̃(�−1�yj�).
Opposed to the one-sided estimators �14� and �16�, the

two-sided targeted free-energy estimator �29� is an implicit

equation that needs to be solved for �F̂

01. Note however that

the solution �F̂

01 is unique.
Let us mention a subtlety concerning the choice of the

ratio
p1

p0
. The mixed ensemble ��W ,Y�� is specified by the

mixing ratio
p1

p0
, and by the conditional work probability den-

sities p�W 
Y�. With the mixed ensemble we are free to
choose the mixing ratio. For instance, replacing the ensemble
averages in the balance equation �25� by sample averages
results in an estimator p1p�0 
W1�= p0p�1 
W0� for �F that
depends on the value of the mixing ratio. This raises the
question of the optimal choice for

p1

p0
. As shown in the Ap-

pendix, it is optimal to choose the mixing ratio equal to the
sample ratio,

p1

p0
=

n1

n0
. A result that may be clear intuitively,

since then the mixed ensemble reflects the actual samples
best.

Other free-energy estimators follow, if the explicit expres-
sions �28� and the definition of the constant C, Eq. �27�, are
inserted in the balance equation �25�. The latter can then be
expressed as

e��F = e�C
� 1

1 + e��C−W� p�W
1�dW

� 1

1 + e−��C−W� p�W
0�dW

, �30�

and results in the estimator
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�F̂

B�C� = C +
1

�
ln

1

n1
	
j=1

n1 1

1 + e��C−Wj
1�

1

n0
	
i=1

n0 1

1 + e−��C−Wi
0�

. �31�

The nontargeted version of this estimator, i.e., for M= id, is
due to Bennett �13� who used a variational principle in order
to find the estimator for the free-energy difference that mini-
mizes the mean square error.

Equation �30� is an identity for any value of C, since with
the ratio

p1

p0
the value of C=�F+ 1

� ln
p1

p0
can be chosen arbi-

trarily. However, concerning the estimator �31�, different val-
ues of C yield different estimates. Bennett’s choice is

CB = �F +
1

�
ln

n1

n0
, �32�

i.e.,
p1

p0
=

n1

n0
, which results from minimizing the mean square

error ���F̂

B−�F�2
, where the angular brackets denote an
average over infinitely many repetitions of the estimation
process �31� with n0 and n1 being fixed. According to the
Appendix, Bennett’s choice is also optimal for any target
map M.

With C=CB, Eq. �31� has to be solved in a self-consistent
manner which is tantamount to solve the two-sided targeted

estimator �29�. In other words, �F̂

B�CB� is the unique root

�F̂

01 of Eq. �29�.

V. OVERLAP MEASURES AND MEAN SQUARE ERRORS

In this section we introduce measures for the overlap of �̃0
with �1, or, equivalently, of p�W 
0;M� with p�W 
1;M�
and relate them to the mean square error of one- and two-
sided estimators.

The estimators �14�, �16�, and �29� are subject to both,
bias and variance. Taking both errors into account results in
the mean square error. Let us consider the mean square errors
of the one-sided targeted estimators first. They read X0

ª ���F̂

0−�F�2
0= ��ln e−��W0−�F��2
0 in forward direction,
and analogously in backward direction. In the forward direc-
tion, it can be quantified by expanding the logarithm into a
power series about the mean value of its argument,
�e−��W0−�F�
0=1, and neglecting terms of higher order in 1

N ,
which gives

�2X0 �
1

N
��e−��W−�F� − 1�2
0. �33�

Equation �33� is valid for a sufficiently large sample size N
�large N limit� �21�. With the use of the fluctuation theorem
�19�, the variance appearing on the right-hand side of Eq.
�33� can be written ��e−��W−�F�−1�2
0= �e−��W−�F�
1−1
�e−���W
1−�F�−1. This yields the inequality

�2X0 �
1

N
�e���F−�W
1� − 1� . �34�

In the same manner as above the inequality

�2X1 �
1

N
�e���W
0−�F� − 1� �35�

is obtained for the mean square error X1 of the reverse esti-

mator �F̂

1.
The inequalities �34� and �35� specify the minimum

sample size N that is required to obtain a forward and reverse

estimate �F̂, respectively, whose root mean square error �X
is not larger than kT. Namely, N�e���F−�W
1� is required for
a forward, and N�e���W
0−�F� for a reverse estimate. Similar
expressions are found in Ref. �22�. Since the required sample
size N depends exponentially on the dissipation, it is good to
choose a target map M which reduces the dissipation in the
opposite direction.

The dissipation is related to the overlap of �̃0 with �1. The
overlap of two probability densities 
a�z� and 
b�z� of a
random variable z can be quantified with the Kullback-
Leibler divergence

D�
a�
b� ª� 
a�z�ln

a�z�

b�z�

dz , �36�

a positive semidefinite measure that yields zero if and only if

a is identical to 
b. Applied to the densities �1 and �̃0, the
Kullback-Leibler divergence turns out to be identical with
the Kullback-Leibler divergence of p�W 
1;M� with
p�W 
0;M� and results in the generalized dissipated work in
reverse direction,

D��1��̃0� = D„p�W
1;M��p�W
0;M�… = ���F − �W
1� ,

�37�

which is established with the use of Eqs. �11� and �18�, and
the fluctuation theorem �19�. Similarly, we have

D��̃0��1� = D„p�W
0;M��p�W
1;M�… = ���W
0 − �F� .

�38�

For the one-sided targeted free-energy estimators this means
that choosing a target map which reduces the dissipation in
the opposite direction is the same as choosing a target map
which enhances the overlap of �̃0 with �1.

Now, we proceed with the overlap measure and the mean
square error of the two-sided free-energy estimator �29�. In
order to keep the notation simple, we assume that the
samples of forward and reverse work values are of equal
size, n0=n1= N

2 , i.e., n0+n1=N. �A generalization to n0�n1 is
straightforward possible, but not given in this paper.�

Consider the overlap density pol�W 
M�,

pol�W
M� ª
1

Aol

p�W
0;M�p�W
1;M�
1

2
�p�W
0;M� + p�W
1;M��

, �39�

where the normalization constant Aol reads
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Aol =� p�W
0;M�p�W
1;M�
1

2
�p�W
0;M� + p�W
1;M��

dW

=� �̃0�y��1�y�
1

2
��̃0�y� + �1�y��

dy . �40�

Aol is a measure for the overlap area of the distributions and
takes its maximum value 1 in case of coincidence. Using the
fluctuation theorem �19�, the two-sided overlap measure can
be written

1

2
Aol = � 1

1 + e���F−W��
1

= � 1

1 + e−���F−W��
0
. �41�

Comparing Eq. �41� with the two-sided targeted free-energy
estimator �29�, one sees that the two-sided targeted free-
energy estimation method readily estimates the two-sided
overlap measure. The accuracy of the estimate depends on
how good the sampled work values reach into the main part
of the overlap distribution pol�W 
M�. By construction, the
overlap region is sampled far earlier than the further distant
tail that lies in the peak of the other distribution, cf. Fig. 1.
This is the reason why the two-sided estimator is superior if
compared to the one-sided estimators.

In the large N limit the mean square error X01�N�
= ���F̂

01−�F�2
 of the two-sided estimator can be expressed
in terms of the overlap measure and reads

X01�N� =
4

N
� 1

Aol
− 1� , �42�

cf. �13,15�. Note that if an estimated value Âol is plugged in,
this formula is valid in the limit of large N only, but it is not
clear a priori when this limit is reached. Therefore, we de-
velop a simple convergence criterion for the two-sided esti-
mate.

VI. CONVERGENCE

In this section, a measure for the convergence of the two-
sided estimate is developed, again for the special case n0

=n1= N
2 . First, we define the estimate Âol of the overlap mea-

sure Aol with

1

2
Âol�N� =

1

n1
	
j=1

n1 1

1 + e���F̂

01−Wj
1�

, �43�

which is equal to 1
n0

	i=1
n0 1

1+e−���F̂

01−Wi
0�

, as we understand the

estimate �F̂

01 to be obtained according to Eq. �29� with the
same samples of forward and reverse work values. Since the

accuracy of the estimated value Âol is unknown, we need an
additional quantity to compare with.

Another expression for the overlap measure is

1

2
Aol = �� 1

1 + e���F−W��2�
1

+ �� 1

1 + e−���F−W��2�
0
,

�44�

which can be verified with the fluctuation theorem �19�.
Based on Eq. �44�, we define the overlap estimator of second
order,

1

2
Âol

�II��N� =
1

n1
	
j=1

n1 � 1

1 + e���F̂

01−Wj
1��2

+
1

n0
	
i=1

n0 � 1

1 + e−���F̂

01−Wi
0��2

. �45�

Because �F̂

01 converges to �F, both Âol and Âol
�II� con-

verge to Aol in the limit N→�. However, the second-order

estimator Âol
�II� converges slower and is for small N typically

much smaller than Âol, since the main contributions to the
averages appearing in Eq. �44� result from work values that
lie somewhat further in the tails of the work distributions.

We use the relative difference

a�N� =
Âol − Âol

�II�

Âol

�46�

to quantify the convergence of the two-sided estimate �F̂

01,

where Âol, Âol
�II�, and �F̂

01 are understood to be calculated
with the same two samples of forward and reverse work
values.

From Eqs. �45�, �43�, and �29� follows that 0
 Âol
�II�


2Âol holds. Hence, the convergence measure a�N� is
bounded by

20 30 40 50 60
0

0.02

0.04

0.06

0.08

βW

FIG. 1. �Color online� Targeted work probability distributions
for the expansion of a cavity in an ideal gas and the associated
overlap distribution. The up �down� triangles display the normalized
histogram of a sample of forward �reverse� work values. The
smooth solid curves are the exact analytic work distributions
p�W 
0;M� �right� and p�W 
1;M� �left�, and the dashed curve
shows their overlap distribution pol�W 
M�. The straight vertical
lines show the values of the targeted estimates of �F on the ab-
scissa. From left to right: the reverse, the two-sided �which is in-
distinguishable from the exact analytic value�, and the forward
estimate.
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− 1 
 a�N� 
 1 �47�

for any N. A necessary convergence condition is a�N�→0.
This means that only if a�N� is close to zero, the two-sided
overlap estimators can have converged. Typically, a�N� being
close to zero is also a sufficient convergence condition.

Hence, if a�N� is close to zero, the mean square error of �F̂

01

is given by Eq. �42� with Aol� Âol. As can be seen from Eq.
�42�, the mean square error and in turn the variance and the
bias are reduced by both, by taking a larger sample size N
and by choosing a map M that enhances the overlap of �̃0
with �1.

With the targeted free-energy estimators at hand, together
with their mean square errors, we are now ready to compute
free-energy differences numerically.

VII. NUMERICAL EXAMPLES

We investigate two numerical applications. One is the
free-energy difference of a fluid subject to the expansion of a
cavity which allows the comparison with published results
�7�. The other is the chemical potential of a fluid in the high
density regime.

Beneath an ideal gas, the fluid is chosen to be a Lennard-
Jones fluid with pairwise interaction

V�rkl� = 4��� �

rkl
�12

− � �

rkl
�6� , �48�

where rkl is the distance between the kth and lth particle,
rkl= 
rk−rl
. The parameters used are those of argon, �
=3.542 Å, and � /k=93.3 K �24�.

In all applications, the samples from the densities �0 and
�1 are simulated with the Metropolis algorithm �23�. In order
to simulate macroscopic behavior with a small number Np of
particles, periodic boundary conditions and the minimum im-
age convention �6� are used. Pairwise interactions are trun-
cated at half of the box length Rbox=L /2, but are not shifted,
and the appropriate cutoff corrections are applied �6�.

A. Expansion of a cavity in a fluid

The expansion of a cavity in a fluid is given by the fol-
lowing setup: Consider a fluid of Np point molecules with
pairwise interaction V�rkl� confined in a cubic box of side
length 2Rbox, but excluded from a sphere of radius R
Rbox,
compare with Fig. 2. Both the box and the sphere are cen-
tered at the origin r=0. A configurational microstate of the
system is given by a set x= �r1 , . . . ,rNp

� of particle positions
rk. Growing the sphere from R=R0 to R=R1 decreases the
volume accessible to the particles and the fluid is com-
pressed. We are interested in the increase of free-energy �F
subject to the compression of the fluid. Since the kinetic
contribution to the free-energy is additive and independent of
R, the difference �F depends only on the configurational part
of the Hamiltonian. The latter reads

Hi�x� =�	
k�l

V�rkl� if x � �i,

� if x � �i,
� �49�

with i=0,1. �0 and �1 denote the accessible parts of con-
figuration space of the system 0 �R=R0� and 1 �R=R1�, re-
spectively. We assume that R0�R1 holds which implies
�1��0.

Drawing a sample �xk� from �0 and applying the tradi-
tional forward estimator �4� results in the following: e−��H�xk�

takes the values one and zero depending on whether xk
��1 or not, i.e., whether the region between the two spheres
of radius R0 and R1 is found vacant of particles or not. A
comparison with Eq. �3� reveals that e−��F is the probability
for the spherical shell being observed devoid of particles �7�.
Hence, the rate of convergence of e−��H decreases with the
latter probability and will in general be poor.

Conversely, drawing a sample yk from �1 and applying the

traditional reverse estimator �F̂

1
trad= 1

�e��H�y� �Eq. �16� with
��x�=x� figures out to be invalid, because the term e��H�yk�

takes always the value one. In consequence, the traditional
reverse estimator is inconsistent. The deeper reason for this
is that �1��0 holds: Eq. �2� is valid only for x��1. By the
same reason, the traditional two-sided estimator is inconsis-
tent, too.

The mentioned shortcomings are avoided with a well cho-
sen target map. Consider mapping each particle separately
according to

��x� = ���r1�
r1

r1
, . . . ,��rNp

�
rNp

rNp

� , �50�

where rk= 
rk
 is the distance of the kth particle with respect
to the origin, and � : �R0 ,Rmax�→ �R1 ,Rmax� is a bijective and
piecewise smooth radial mapping function. In order not to
map particles out of the confining box, it is required that
��r�=r holds for r�Rbox. The Jacobian for the radial map
�50� reads

Rbox

R

FIG. 2. The geometric setup.
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� ��

�x
� = �

j=1

Np ��rj�2

rj
2

���rj�
�rj

. �51�

�This formula is immediately clear when changing to polar
coordinates.� We use the map of Ref. �7� which is designed
to uniformly compress the volume of the shell R0�r
Rbox
to the volume of the shell R1�r
Rbox. Thus, for r
� �R0 ,Rbox� the radial mapping function ��r� is defined by

��r�3 − R1
3 = c�r3 − R0

3� , �52�

with the compression factor c= �Rbox
3 −R1

3� / �Rbox
3 −R0

3�. Ac-
cording to Eq. �51�, we have ln K�x�=��x�ln c, where ��x� is
the number of particles in the shell R0�r
Rbox.

1. Ideal gas

As a first illustrative and exact solvable example we
choose the fluid to be an ideal gas, V�rkl�=0. In this case the
free-energy difference is solely determined by the ratio of the
confined volume Vi=8Rbox

3 − 4
3
Ri

3, i=0,1, and is given by
��F=−Np ln�V1 /V0�. Using the radial map �52�, the work in

the forward direction as a function of x reads �H̃�x�=
− 1

���x�ln c and takes discrete values only, as ��x�=n holds
with n� �0,1 , . . . ,Np�. Consequently, the probability
p�Wn 
0;M� of observing the work Wn=− n

� ln c in forward
direction is binomial,

p�Wn
0;M� = �Np

n
�q0

n�1 − q0�N−n, �53�

where q0= 4
3
�Rbox

3 −R0
3� /V0 is the probability of any fixed

particle to be found in the shell R0�r
Rbox. In analogy, the
probability distribution p�Wn 
1;M� for observing the work
W=Wn in reverse direction is given by replacing the index 0
with 1 in Eq. �53�. Finally, the work probability distributions
�rather then the densities� obey the fluctuation theorem �19�
for any n=0,1 , . . . ,Np,

p�Wn
0;M�
p�Wn
1;M�

=
1

cn�V1

V0
�Np

= e��Wn−�F�. �54�

A simple numerical evaluation highlights the convergence
properties. Choosing the parameters to be 2Rbox=22.28 Å,
R0=7 Å, R1=10 Å, and Np=125 �� arbitrary�, the free-
energy difference takes the value ��F=42.1064. Because

e−��H̃�x� can take only the numbers zero and one, the prob-
ability of observing a configuration x with nonvanishing con-
tribution in the traditional forward estimator of �F is e−��F

�10−19. Hence, in practice it is impossible to use the tradi-
tional method successfully, since it would require at least
Np�1019 Monte Carlo trial moves. However, the targeted
approach already gives reasonable estimates with a sample
size of just a few thousands. Figure 1 shows estimates of the
targeted work probability distributions for samples of size
ni=104 �i=0,1� from �0 and �1 each. While the forward
distribution p�W 
0;M� is obviously well sampled in the
central region, the sampling size is too small in order to
reach the small values of �W where the reverse distribution
p�W 
1;M� is peaked. Exactly the latter values would be

required for an accurate exponential average in the targeted
forward estimator, Eq. �14�. Therefore, the targeted forward

estimate of �F is still inaccurate; it yields ��F̂

0
=45.0�0.3. The same is true for the targeted reverse esti-

mate �16� which gives ��F̂

1=41.3�0.5. The errors are cal-
culated using root mean squares and propagation of uncer-
tainty. A more accurate estimate follows from the targeted

two-sided estimator �29� which yields ��F̂

01=42.1�0.1
�n0=n1=104�. This is clear, as for the two-sided estimate it is
sufficient yet that the forward and reverse work values
sample the region where the overlap distribution pol�W 
M�,
Eq. �39�, is peaked, which is obviously the case, cf. Fig. 1.

The ideal gas is an exactly solvable model. This raises the
question of whether a “perfect” or an ideal map can be con-
structed. The answer is yes, however such an ideal map
would not be in the set of radial maps as defined with Eq.
�50�. Instead, the ideal map would also depend on the angles
and would have a more complicated structure. The reason for
this is the geometry of the simulation box: An ideal map
needs to compress the fluid of uniform density with R=R0 to
the fluid of uniform density with R=R1. The radial mapping
function ��r�, Eq. �52�, can be viewed as a good approxima-
tion to the ideal map within the set of radial maps.

2. Lennard-Jones fluid

We now focus on particles with Lennard-Jones interaction
�48�. The parameters are chosen to coincide with those of
Ref. �7�, i.e., 2Rbox=22.28 Å, R0=9.209 Å, R1=9.386 Å,
Np=125, and T=300 K. In Lennard-Jones units, the reduced
densities �

i
*=�3Np /Vi of the systems 0 �R=R0� and 1 �R

=R1� are �
0
*=0.713 and �

1
*=0.731, respectively, and T*

=1 / ����=3.215 holds for both. If we had an ideal gas, the
probability of observing the space between the spheres of
radius R0 and R1 to be vacant of particles would be
�V1 /V0�Np =0.044. Because of the strong repulsive part of
interaction, this probability is much smaller in case of a
dense Lennard-Jones fluid.

We generate samples of �0�x� and �1�x� with a Metropolis
Monte Carlo simulation. Each run starts with 1000 equilibra-
tion sweeps, followed by the production run. In the produc-
tion run the configurational microstate x is being sampled
every fourth sweep only in order to reduce correlations be-
tween successive samples. The use of decorrelated data is of
particular importance for the self-consistent two-sided esti-

mate �F̂

01 because it depends intrinsically on the ratio
n1

n0
of

the numbers of uncorrelated samples, cf. Eq. �29�.
Figure 3 gives an overview of independent runs with dif-

ferent sample sizes N, where the one- and two-sided targeted
estimators can be compared with each other and with the
traditional forward estimator. Displayed is the estimated

mean �F̂�N� in dependence of the sample size N. The error
bars reflect the estimated standard deviation

��F̂�N� − �F̂�N��2
1/2

.

Each mean and each standard deviation is estimated using

z�N� independent estimates �F̂�N�. In ascending order of N,
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z�N� reads 440, 170, 40, 13. For the two-sided estimates,
n0=n1= N

2 is used and Eq. �29� is solved.
Note that the theoretical mean of traditional forward es-

timates of �F is infinite for any finite N, because of the finite
probability of observing a sequence of length N of solely
vanishing contributions to the exponential average e−��H.
Strictly spoken, the estimator ��F̂

0
trad=−ln e−��H is not well

defined, because �1��0. Nevertheless, in Fig. 3 there are
two finite observed mean values of traditional forward esti-
mates displayed, what by no means is a contradiction. Infi-
nite values are observed in the cases where N�104 holds.
This is symbolized by the rising dotted line. The mentioned
ill definiteness of the traditional estimator is removed by
using the map �52�. Figure 3 shows that all three targeted
estimators are consistent even for small N in the sense that
the error bars overlap. Whereas the targeted forward and re-
verse estimators show to be decreasingly biased with increas-
ing N, the targeted two-sided estimator does not show any
noticeable bias at all. This example demonstrates how worth
it can be to take all three estimators, forward, reverse, and
two-sided, into account. The one-sided estimators are biased
in opposite directions and may serve as upper and lower
bounds for �F, Eq. �23�, whereas the two sided is typically
placed in between the one sided.

We conclude this example with explicit estimates ob-
tained from a single run with N=106, which are summarized
in Table I. The errors are derived using block averages �25�
and propagation of uncertainty.

B. Chemical potential of a homogeneous fluid

Consider a fluid of Np particles confined within a cubic
box of volume Vc= �2Rbox�3 with pairwise interaction V�rij�.

The configurational Hamiltonian for the Np-particle system
at x= �r1 , . . . ,rNp

� reads

HNp
�x� = 	

i�j

Np

V�rij� . �55�

The configurational density for the Np system is given by

�Np
�x� = e−�HNp

�x�/ZNp
, �56�

with the partition function ZNp
=�e−�HNp

�x�dx. Now consider
one particle is added: the position of this new particle may be
rNp+1. The equilibrium density of the �Np+1�-particle system
reads

�Np+1�x� = e−�HNp+1�x,rNp+1�/ZNp+1. �57�

Taking the ratio of the densities �56� and �57� leads to Wi-
dom’s particle insertion method �26� for estimating the ex-
cess chemical potential �ex of the Np system, defined as the
excess of the chemical potential � to that of an ideal gas at
the same temperature and density. For sufficiently large Np,
�ex can be approximated with

�ex = −
1

�
ln

ZNp+1

ZNp
Vc

. �58�

Turning the tables, we use Eq. �58� to be the definition of the
quantity �ex. The particle insertion method inserts at a ran-
dom position an extra particle to the Np system and measures
the increase of energy that results from this particle. Since
we consider a homogeneous fluid, we may as well fix the
position of insertion arbitrarily, for instance at the origin,
what is done in the following. We define system 1 through
the configuration-space density �1�x� as follows:

�1�x� = Vc� ��rNp+1��Np+1�x,rNp+1�drNp+1. �59�

The factor Vc ensures normalization. Written in the usual
form �1�x�=e−�H1�x� /Z1, we have

H1�x� = HNp
�x� + 	

k=1

Np

V�rk� �60�

and Z1=ZNp+1 /Vc. System 1 can be understood as an equilib-
rium system of Np interacting particles in the external poten-
tial 	k=1

Np V�rk�, due to one extra particle fixed at the origin r

TABLE I. Cavity in a Lennard-Jones fluid. Estimated free-

energy differences ��F̂ for the expansion of a cavity, using targeted
and traditional estimators. N=106.

Method ��F̂

Traditional forward 7.500�0.043

Targeted forward 7.439�0.003

Targeted two sided 7.440�0.002

Targeted reverse 7.420�0.009

100 1000 10000 100000

7.0

7.5

8.0

N

β∆
F

targ. forward
targ. two−sided
targ. reverse
trad. forward

FIG. 3. �Color online� Free-energy estimates for the expansion
of a cavity in a Lennard-Jones fluid. Shown are the average values
of traditional and targeted estimates of �F in dependence of the
sample size N, with an errorbar of one standard deviation. In order
to distinguish the data points those corresponding to targeted esti-
mates are shifted to the right and are spread, whereas those corre-
sponding to traditional estimates are shifted to the left. For example,
all four data points in the vicinity of N=10 000 refer to N=10 000.
The dashed horizontal line represents a targeted two-sided estimate
with N=106, see Table I.
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=0. Further, we identify system 0 with the Np-particle system
and rewrite

�0�x� = �Np
�x�, H0�x� = HNp

�x� �61�

and Z0=ZNp
. The ratio of �0 and �1 has the familiar form of

Eq. �2�, with �F being identical to �ex,

�0�x�
�1�x�

= e���H�x�−�ex�. �62�

The energy difference �H�x�=H1�x�−H0�x� is the increase
of energy due to an added particle at the origin r=0,

�H�x� = 	
k=1

Np

V�rk� . �63�

Assume a finite potential V�r� for nonvanishing r �i.e., no
hard-core potential�, but with a strong repulsive part for r
→0 �a so-called soft-core potential�, e.g., a Lennard-Jones
potential. In this case, the configuration spaces of system 0
and 1 coincide, i.e., �0=�1. Thus a traditional estimate of
�ex is in principle valid in both directions, forward and re-
verse. In the forward direction we have the equivalent to the

particle insertion method �26�, ��ex̂
0
trad=−ln e−��H�x�, but

with the fixed position of insertion r=0. Here x is drawn
from �0 and we will typically find a particle in a sphere of
radius r̄ centered at the origin. r̄ can roughly be estimated by
the mean next-neighbor distance �Vc /Np�1/3 of an ideal gas.
The dominant contributions to the exponential average come
from realizations x that resemble typical realizations of sys-
tem 1 �22�. However, typical realizations x of system 1 do
not contain any particle within a sphere of some radius rhc
centered at the origin, because of the extra particle fixed at
the origin and the strong repulsive part of the interaction. rhc
may be regarded as a temperature-dependent effective hard-
core radius of the interaction �V�r�. We conclude that the
insertion method is accurate and fast convergent only if rhc

3

� r̄3, i.e., for low densities. Concerning the reverse tradi-

tional estimator ��ex̂
1
trad= ln e��H�y�, where y is drawn from

�1, the same argumentation reveals the impossibility of ob-
taining an accurate estimate in this way. Effectively, the par-
ticles of system 1 cannot access the vicinity of the origin, no
matter how large the sample size will be. In this sense, �1
can be substituted with an effective �1

eff��1=�0, implying
that the traditional reverse estimator tends to be inconsistent.

1. Constructing a map

Again, we use a map that changes each particle’s distance
to the origin separately, ��x�= �R1 , . . . ,RNp

�, with Rk

=��rk�
rk

rk
. In searching a suitable radial mapping function

��r�, we are guided by the mean radial properties of the
systems themselves. The radial probability density g0�r� of
finding a particle in distance r from origin in system 0 is

g0�r� =
1

Np
	
k=1

Np � ��rk − r��0�x�dx , �64�

and that for system 1 is

g1�r� =
1

Np
	
k=1

Np � ��rk − r��1�x�dx . �65�

Due to the interaction with the extra particle fixed at the
origin in system 1, g1�r� will in general be quite different
from g0�r�. The latter is related to a homogeneous fluid and
is proportional to r2 �for r�Rbox�, whereas the former refers
to an inhomogeneous one and is proportional to r2e−�V�r� in
the limit r→0 �26�. For large r, however, the influence of the
extra particle vanishes and g1�r�→g0�r�. Evaluation of the
definition �64� of g0 yields

g0�r� =
r2

Vc
h0�r� , �66�

where h0�r� accounts for the decay of volume in the corners
of the confining box and is given by h0�r�
=��A�r� sin �d�d�. The integration extends over the fraction
of surface A�r� of a sphere with radius r that lies inside the
confining box. Note that h0�r�=4
 for r�Rbox. In contrast to
g0, g1 depends on the interaction V�r�. After some transfor-
mations of the right-hand side of Eq. �65�, g1 can be written

g1�r� =
r2e−�V�r�

Vc
h1�r� . �67�

The function h1�r� can be written �cf. �26��

h1�r� = e2��ex
h0�r��exp�− � 	

k=1

Np−1

�V�rk�

+ V�
rk − rNp

����

�Np−1�

, �68�

where the angular brackets denote an average with a Np−1
particle density according to Eq. �56� and the vector rNp

is
arbitrarily fixed, but of magnitude r. Further, the approxima-
tion Vc

2ZNp−1 /ZNp+1�e2�ex
is used.

We note that the ratio of g1�r� /g0�r� equals the well-
known radial distribution function of the Np+1-particle fluid,

��r� =
g1�r�
g0�r�

. �69�

Figure 4 shows estimates of g0 and g1 for a dense Lennard-
Jones fluid with parameter values of argon �see below Eq.
�48��, obtained from Monte Carlo simulations.

Now define a function �*�r� by requiring that it maps the
mean radial behavior of system 0 to that of system 1. This is
done by demanding

�
0

�*�r�

g1�t�dt = �
0

r

g0�t�dt , �70�

which yields

��*

�r
=

g0�r�
g1„�*�r�…

. �71�

In the limiting case of an ideal gas, g1=g0 holds and the map
becomes an identity, �*�r�=r. Of practical interest are the
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cases where g1 is unknown and thus Eq. �70� cannot be used
to derive �*�r�. However, the function �* can be estimated
with Monte Carlo simulations without knowledge of g1 and
g0 as follows.

Take a sufficiently large amount n of samples xj
= �r1j , . . . ,rNpj�, j=1, . . . ,n, drawn from �0�x� together with
the same number of samples yj = �R1j , . . . ,RNpj� drawn from
�1�y�. Calculate the distances to the origin rij = 
rij
 and Rij
= 
Rij
 and combine all rij to the set �ra ,rb ,rc . . . �, as well as
all Rij to the set �Ra ,Rb ,Rc , . . . �. Provided in both sets the
elements are ordered ascending, ra
rb
rc
 . . . and Ra

Rb
Rc
 . . ., �* is simulated by constructing a one-to-one
correspondence ra→Ra, rb→Rb , . . . and estimating �*�r�� to
be R�, �=a ,b ,c , . . .. In effect, we have drawn the r� and R�

from the densities g0�r� and g1�r�, respectively, and have
established a one-to-one correspondence between the ordered
samples. We refer to this scheme as the simulation of the
map of g0 to g1.

The solid curve shown in Fig. 5 is the result of a simula-
tion of the function �* for a Lennard-Jones fluid �parameters
of argon, �*=0.9, T*=1.2�. The corresponding densities g0
and g1 are plotted in Fig. 4. Noticeable is the sudden “start”
of �* with a value of roughly �. This is due to the strong
repulsive part of the interaction that keeps particles in system
1 approximately a distance � away from the origin. There-
fore, the behavior of �*�r� for r→0 is not obtainable from
finite-time simulations. However, the definition of �* implies
that for any soft-core potential �*�0�=0 holds. To model �*

for small r, the limit g1�r� →
r→0

ar2e−�V�r�4
 /Vc can be used,
where a is a constant. Thus, Eq. �70� can be written

��*−1�r��3 = 3a�
0

r

r�2e−�V�r��dr� �72�

in the limit r→0, with �*−1 being the inverse of �*. The
constant a is in general unknown, but here it can be chosen

such that a continuous fit to the simulated part of �*−1 is
obtained.

When the function �* is used in the configuration space
map � according to Eq. �50�, then, by definition of �*, the
radial density g̃0�r� of the mapped distribution �̃0�x�, Eq. �8�,
is identical to the one of �1�x�,

g̃0�R� ª
1

Np
	

k
� ��
Rk
 − R��̃0���d�

=� ����r1� − R��0�x�dx

=� � ����r� − R���r1 − r��0�x�dxdr

=� ����r� − R�g0�r�dr = g1�R� . �73�

Therefore we expect that the overlap of the mapped distribu-
tion �̃0 with �1 is larger than the overlap of the unmapped
distribution �0 with �1. However, it must be noted that the
use of �* in the map � is in general valid only in the limit of
an infinite large system �N ,Vc→�; N /Vc=const�, since we
have not yet taken into account the requirement that particles
may not be mapped out of the confining box. If Rbox is cho-
sen large enough, this might not be a serious problem, cf.
Fig. 5.

2. Application of the radial map �*

We now apply �* and estimate the chemical potential of a
dense Lennard-Jones fluid ��*=0.9, T*=1.2, parameters of
argon� with Rbox=3.1056� and Np=216 particles. Configu-
rations are drawn from �0 and �1 using a Metropolis algo-
rithm with seven decorrelation sweeps between successive
drawings. From every drawn configuration there results one
value for the traditional work and one for the work related to
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0.1

0.2

r/σ
Rbox/σ

g
0

g
1

0.1*g
1
/g

0

FIG. 4. �Color online� The radial densities g1�r� and g0�r� for a
dense Lennard-Jones fluid ��*=0.9 and T*=1.2�, estimated from
simulated data. The ratio g1�r� /g0�r� equals the radial distribution
function.
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FIG. 5. �Color online� Simulated radial mapping function �*�r�
for a dense Lennard-Jones fluid �solid�. �* maps the radial density
g0�r� to g1�r�, cf. Fig. 4. For the ideal gas, �* is the identity map
�dashed�.
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the map. The usual cutoff corrections �6� are applied. To
avoid mapping particles out of the confining box, we simu-
late the map on the interval 0
r
Rbox subject to the con-
dition �*�Rbox�=Rbox and use �*�r�=r for r�Rbox. The de-
rivatives of �* and �*−1 are obtained numerically. For the
calculation of the work values in the simulation, the func-
tions �*�r� and �*−1�r� as well as their derivatives are dis-
cretized in steps �r with Rbox /�r=11�104.

A comparison of the behavior of the targeted and tradi-
tional forward, reverse, and two-sided estimators in depen-
dence of the sample size N is given in Fig. 6 �for the two-
sided estimators n0=n1= N

2 is used�. Each data point
represents the average value of z�N� independent estimates
�ex̂�N�. The error bars display one standard deviation.
z�N� reads z�N�=450,250,45,5 for N=100,1000,10 000,
100 000, respectively.

As can be seen from Fig. 6, the traditional one-sided es-
timators behave quite different. The reverse estimator con-
verges extremely slow in comparison to the forward estima-
tor. This can be understood by comparing the average work
values Wi in forward �i=0� and reverse �i=1� direction, see
Table II. Since the absolute value of ��F=��ex is small, the
traditional reverse estimator practically never converges,
whereas for an accurate traditional forward estimate we need
some 105 work values, cf. Eqs. �34� and �35�. In contrast, the
targeted one-sided estimators both show a similar conver-
gence behavior if compared with each other. However, the
convergence is slow.

The two-sided estimators converge much faster, in par-
ticular, the targeted two-sided estimator converges fastest,

see Fig. 6. The convergence of the latter was checked with
the convergence measure a�N�, Eq. �46�. For instance, the
convergence measure a�N� takes the values 0.08 and 0.01 for
the traditional and the targeted estimator, respectively, if n0

=n1= N
2 =105 configurations per direction are sampled.

Investigating the histograms of the generalized work dis-
tributions in the traditional and the targeted case visualizes
the effectiveness of the mapping. The histograms are similar
to those displayed in Fig. 8 for m=0 �traditional� and m
=0.005 �targeted�.

A moderate gain in precision for the two-sided targeted
estimator is found if compared to the precision of the two-
sided traditional estimator which can be quantified with the

overlap measure Âol �43�. Namely, Âol=3.0�10−4 for the

targeted case, and Âol=2.2�10−4 for the traditional case.
We also studied other radial mapping functions �. Some

of them turned out to give much better results and are easier
to deal with.

3. Other radial mapping functions

The radial mapping function �* was obtained from simu-
lations, because the distribution g1�r� is analytically un-
known. However, we are free to use any radial mapping
function ��r� and can thus in turn fix the function g1 appear-
ing in Eq. �70�. To do this, we introduce the normalized,
positive definite function g1��r�,

g1��r� =
r2

c1
e−��V�r�+Q�r��, r � �0,Rbox� . �74�

Q�r� is an arbitrary finite function over �0,Rbox� and c1
=�0

Rboxr2e−��V�r�+Q�r��dr a normalization constant. Further, let
g0��r� be a normalized quadratic density,

g0��r� =
r2

c0
, r � �0,Rbox� , �75�

with c0=Rbox
3 /3.

The general �monotonically increasing� radial mapping
function ��r� can be expressed in terms of the equation

�
0

��r�

g1��t�dt = �
0

r

g0��t�dt �76�

for r� �0,Rbox�. For r�Rbox it shall be understood that
��r�=r. Given the function Q�r�, � and �−1 are determined
uniquely by Eq. �76�. An advantage of defining � with Eq.
�76� is that the derivative �� /�r is given in terms of V and Q,

���r�
�r

=
r2

��r�2e��V„��r�…+Q„��r�…−f�, �77�

with f =− 1
� ln

c1

c0
. Using � in the configuration space map

��x� according to Eq. �50� yields the work function

TABLE II. Estimated values of the mean forward and reverse
work, obtained from N=105 sampled work values each.

�W0 �W1

Traditional 1020 −9.8

Targeted 105 −106
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FIG. 6. �Color online� Targeted estimates of the excess chemical
potential �ex of a dense Lennard-Jones fluid ��*=0.9, T*=1.2�
compared to traditional estimates.

A. M. HAHN AND H. THEN PHYSICAL REVIEW E 79, 011113 �2009�

011113-12



�H˜�x� = 	
i�j

Np

�V�
Ri − R j
� − V�
ri − r j
��

− 	
ri
Rbox

�Q„��ri�… − f� . �78�

Here Ri is understood to be Ri=��ri�
ri

ri
, and the sum in the

second line extends only over those particles for which r

Rbox holds. Note that the potential-energy contribution of
the extra particle fixed at the origin is eliminated in the work
function, due to the definition of �. However, in Eq. �78� we
have already assumed V�r� to be cut off at r=Rbox, i.e.,
V�r�=0 for r�Rbox. Otherwise we had to add
	ri�Rbox

V(��ri�)=	ri�Rbox
V�ri� to the right-hand side of Eq.

�78�.

4. A family of maps

We now introduce a family ��m� of radial mapping func-
tions, where each member �m is defined by Eq. �76� with the
choice

Q�r� = �m − 1�V�r� �79�

in the expression �74�. This choice is motivated by the fol-
lowing: Consider a one particle system, Np=1. In this case
the optimal radial map can be computed analytically and
results in g1��r�= r2

c1
e−�V�r�. We formally use this map for a

system of Np�1 particles, but weaken the potential V�r� by
multiplying it with a small parameter m, i.e., g1��r�
= r2

c1
e−�mV�r�, since the potential is screened by the Np−1 other

particles. This results in Eq. �79�. Useful maps are obtained
for m� �0,1�. Since we have no a priori knowledge on the
optimal value of m, we determine the best value of m nu-
merically.

Figure 7 depicts some members of the family ��m� for
Lennard-Jones interaction �with parameters of argon�. Again,
we apply these functions discretized �in steps �r with

Rbox /�r=11�104� in the calculation of the targeted forward

and reverse work �H̃�x� and �H̃(�−1�x�). Any pair of for-
ward and reverse targeted work distributions belonging to the
same value of m obeys the fluctuation theorem �19�. In par-
ticular they cross at W=�ex ��F=�ex here�, see Fig. 9. Nev-
ertheless, the shape of these distributions is sensitive to the
value of m. This is demonstrated in Fig. 8. There, normalized
histograms of �W are shown. They result from 104 work
values per m and per direction. We emphasize that all of the
targeted forward �reverse� work values were obtained with
one sample of N=104 configurations x from �0 ��1�. Figure 9
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FIG. 7. �Color online� Members of the family of radial mapping
functions �m for the Lennard-Jones potential. For m→0, �m con-
verges to the identity map �0�r�=r.
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FIG. 8. �Color online� Forward �right� and reverse �left� work
distributions of a Lennard-Jones fluid ��*=0.9, T*=1.2� for differ-
ent radial mapping functions �m. �m=0 results in the traditional
work distributions.�
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FIG. 9. �Color online� A detailed enlargement of forward �as-
cending lines� and reverse �descending lines� work distributions of
the Lennard-Jones fluid ��*=0.9, T*=1.2� for two different radial
mapping functions �m. Notice the enhancement of overlap for m
=0.0005. The vertical dashed line displays the estimated two-sided

targeted value, ��ex̂
01=1.91.
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is a detailed enlargement where a sample of n0=n1=106 for-
ward �reverse� configurations is used.

Instructive is the comparison of the mean work �W
 re-
lated to different values of m. In Fig. 10 estimated values of
mean work are shown in dependence of m. From these val-
ues one sees that the dissipation is minimal for m=0 in the
reverse direction. Therefore, the best one-sided targeted esti-
mate of �ex among the family ��m� is obtained with m=0 in
forward direction, i.e., with the traditional particle insertion.
However, the same is not true for two-sided estimates. Using
the same data as before and performing two-sided estimates
with n0=n1= N

2 =104 work values per direction, we obtain the
displayed values �ex̂

01 of Fig. 11. In order to compare the
performance of two-sided estimators for different maps, we
estimate the overlap measures Aol. The latter are shown in
Fig. 10. The maximum value for Aol is found with m being
0.0005. This indicates that m�0.0005 is the optimal choice
for m. The estimates Âol are used to calculate the mean
square errors X01 of the estimates �ex̂

01. The square roots of
the X01 enter in Fig. 11 as error bars.

We are left to check the convergence properties of two-
sided estimators. Figure 12 displays the convergence mea-
sure a�N� for some parameter values m. Best convergence is
found for m=0.0005 �not shown in Fig. 12, but very similar
to m=0.001�. The same value of the mapping parameter m
was found to maximize the overlap Aol.

Employing the optimal value 0.0005 for the mapping pa-
rameter and using n0=n1= N

2 =106 forward and reverse
samples, we have computed the chemical potential. The re-
sults are given in Table III. The listed error is the square root

of the X01 according to Eq. �42� with Aol= Âol. This is justi-
fied with the observed values of the convergence measure a
which are listed in the table, too.

It should be mentioned that the optimal value of m found
here is not universal, but depends on the density �*. If an-
other value is chosen for �*, the optimal m can again be
found from numerical simulations. Note that the maps used
here can be applied to simulations where particles are in-
serted and deleted at random �26�, too. One simply has to use
the point of insertion �deletion� as temporary origin of the
coordinate system and apply the map there. This might en-
hance the efficiency of the simulation.
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FIG. 10. �Color online� The average generalized work �W
0 and
�W
1 in forward and reverse direction, respectively, and the two-
sided overlap measure Aol in dependence of the mapping parameter
m. The forward dissipation is reduced up to 18 orders of magnitude
if compared with the traditional dissipation, cf. Table II. Among the
one-sided estimators the best is found for m=0 in forward direction.
The optimal two-sided estimator results from using the m that maxi-
mizes Aol.
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FIG. 11. �Color online� Two-sided estimates of �ex as function
of the mapping parameter m out of n0=n1= N

2 =104 work values per
direction for each m. The value of the traditional estimate �m=0� is

�ex̂
01=4.0�2.0. The error bars show the square root of the esti-

mated mean square errors X01. For comparison, the dashed line
represents a two-sided estimate with N
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dard deviation 0.03�.
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FIG. 12. �Color online� Convergence measure a�N� of two-sided
estimates for some parameter values m, depending on the sample
size N. A faster decrease of a towards the value 0 indicates a faster
convergence of the two-sided estimator.
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VIII. CONCLUSION

The central result of this paper, a fluctuation theorem for
generalized work distributions, allowed us to establish an
optimal targeted two-sided estimator of the free-energy dif-
ference �F. We have numerically tested this estimator and
found it to be superior with respect to one-sided and nontar-
geted estimators. In addition we have demonstrated that this
estimator can be applied successfully to estimate the chemi-
cal potential of a Lennard-Jones fluid in the high density
regime.

In order to use the targeted two-sided estimator it is how-
ever crucial to use a suitable map. We have investigated the
construction of maps and developed appropriate measures
which enabled a quantitative comparison of the performance
of different maps. Especially, a measure for the convergence
of the two-sided estimate was designed. This points the way
for better results when free-energy differences or chemical
potentials need to be estimated numerically.
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APPENDIX: CONSTRAINT MAXIMUM LIKELIHOOD
DERIVATION OF THE TWO-SIDED ESTIMATOR

Deriving the optimal estimator of �F, given a collection
of n0 forward �Wi

0� and n1 reverse �Wj
1� work values drawn

from p�W 
0� and p�W 
1�, respectively, leads to Bennett’s
acceptance ratio method �13� with the target map included.

In Sec. IV, the mixed ensemble is introduced, where the
elements are given by pairs of values �W ,Y� of work and
direction, and which is specified by the probabilities of di-
rection pY and the densities p�W 
Y�. With the mixture en-
semble, the mixing ratio

p1

p0
can be chosen arbitrarily. Crucial

about the mixture ensemble is that, according to the fluctua-
tion theorem �19�, the analytic form of the conditional prob-
abilities p�Y 
W� can be derived explicitly, regardless of
whether p�W 
Y� is known, see Sec. IV. This provides a natu-
ral way to construct a constraint maximum likelihood esti-
mator �27–29� for �F.

Since it is only possible to draw from the ensembles
p�W 
Y�, but not from p�Y 
W�, Y =0,1, the proper log-
likelihood is

ln L = 	
i=1

n0

ln p�Wi
0
0� + 	

j=1

n1

ln p�Wj
1
1� . �A1�

A direct maximization of Eq. �A1� with respect to �F is
impossible without knowledge of the analytic form of the
probability densities p�W 
Y�. However, according to Bayes
theorem �24� the likelihood can be split into

ln L = ln Lpost��F� + ln Lprior + ln LpY
�A2�

with

ln Lpost��F� = 	
i=1

n0

ln p�0
Wi
0� + 	

j=1

n1

ln p�1
Wj
1� , �A3�

ln Lprior = 	
k=1

n0+n1

ln p�Wk� , �A4�

and

ln LpY
= n0 ln

1

p0
+ n1 ln

1

p1
, �A5�

where the sum in the prior likelihood �A4� runs over all n
observed forward and reverse work values.

Since the definite form of p�W� is unknown, we treat it in
the manner of an unstructured prior distribution and maxi-
mize �A2� with respect to the constant �F and to the func-
tion p�W� �29�. Thereby,

1 =� p�W�dW �A6�

and

p1 =� p�1
W�p�W�dW �A7�

enter as constraints. Using Lagrange parameters � and �, the
constrained likelihood reads

ln Lc = ln L + ��p1 −� p�1
W�p�W�dW�
+ ��1 −� p�W�dW� . �A8�

The conditional direction probabilities p�Y 
W� are known
explicitly in dependence of �F, Eq. �28�, and their partial
derivatives read 1

�
�

��F ln p�0 
W�=−p�1 
W� and
1
�

�
��F ln p�1 
W�= p�0 
W�=1− p�1 
W�. This allows one to ex-

tremize the constraint likelihood �A8� with respect to �F,

0 =
1

�

�

��F
ln Lc = n1 − 	

k=1

n0+n1

p�1
Wk�

− �� �1 − p�1
W��p�1
W�p�W�dW . �A9�

Extremizing the conditional likelihood �A8� with respect to
the function p�W� gives

TABLE III. Two-sided estimates �ex̂
01 of the excess chemical

potential of a Lennard-Jones fluid ��*=0.9, T*=1.2�. Also listed is
the two-sided overlap measure Aol and the convergence measure a.
For the targeted estimate the radial mapping function �m with m
=0.0005 is used. The number of work values in each direction is
106 and the number of particles in the simulation is Np=216.

��ex̂
01 104Âol a

Traditional 1.88�0.08 2.4 0.05

Targeted 1.91�0.03 19 −0.02
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0 =
�

�p�W�
ln Lc =

1

p�W�	k=1

n

��W − Wk� − �p�1
W� − � ,

�A10�

which can be solved in p�W�,

p�W� =
	k��W − Wk�
�p�1
W� + �

, �A11�

or written as

�p�1
W�p�W� = − �p�W� + 	
k

��W − Wk� . �A12�

If interested in the values of the Lagrange multipliers �
and �, one multiplies Eq. �A10� with p�W� and integrates.
This yields

0 = n − �p1 − � . �A13�

A second independent equation follows from inserting Eq.
�A12� into Eq. �A9� which results in

0 = n1 + � − �p1 − n , �A14�

and the Lagrange multipliers take the values

� =
n0

p0
and � =

np0 − n0

p0p1
. �A15�

With the distribution �A11� the constraints �A6� and �A7�
read

1 = 	
k

1

�p�1
Wk� + �
�A16�

and

p1 = 	
k

p�1
Wk�
�p�1
Wk� + �

=
p1

n1
	

k

pB�1
Wk� , �A17�

where pB�1 
W� denotes p�1 
W� with C=�F+ 1
� ln

n1

n0
. When-

ever the constraint �A17� is fulfilled, the constraint �A16�
and the variational equations �A9� and �A10� are automati-
cally satisfied. In consequence, Eq. �A17� defines the con-
strained maximum likelihood estimate of �F. Note that the
estimator �A17� is independent of the choice of

p1

p0
. More-

over, Eq. �A17� is equivalent to Eq. �29� regardless of the
choice of

p1

p0
.

An alternative derivation of the estimator �A17� was pre-
sented by Shirts et al. �15�. There, the specific choice

p1

p0

=
n1

n0
was necessary. With this choice, the Lagrange parameter

� is identical to zero. Hence, there is no need to take any
constraint into consideration and the posterior likelihood
�A3� results directly in the estimator of �F.
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